Как осуществляется контроль герметичности

В настоящее время в различных областях техники широко применяют контроль изделий с помощью проникающих веществ. Методы испытаний различаются по виду проникающих веществ (жидкости или газы), назначению, областям применения, используемой технологической оснастке и др. Жидкие или газообразные пробные вещества проникают через несплошности конструкции вследствие наличия перепада давлений на ее стенке или за счет капиллярных сил. Для конструкций, работающих под избыточным относительно атмосферного давлением, перепад давлений считают положительным, для вакуумных – отрицательным, а для конструкций с разомкнутым объемом – равным нулю.

Методы испытаний, при которых индикаторное вещество проникает через неплотности при положительном перепаде давлений, называют компрессионными, а при отрицательном – вакуумными.

В зависимости от способа индикации первичной информации различают гидравлические, капиллярные, пузырьковые (пневматический, пневмогидравлический, вакуумный), манометрические (падение и нарастание давления, дифференциальный, микроманометрический), химический, искровой, акустический, радиоактивный, галогенный, катарометрический и масс-спектрометрический методы испытаний. Области применения методов определяются их чувствительностью к обнаружению течей, производительностью, стоимостью, безопасностью проведения работ, возможностью механизации и автоматизации контроля.

Контролю герметичности подвергают изделия, у которых на протяжении заданного времени должно сохраняться заданное давление рабочего или контрольного вещества либо утечка рабочего вещества не должна превышать допустимого значения. Эти величины задают в технических условиях (ТУ) на изготовление изделий. К изделиям, испытываемым на герметичность, относятся корпуса судов, летательных аппаратов, ядерных реакторов, изделия холодильной и вакуумной техники, агрегаты и соединяющие их элементы гидравлических и газовых систем, трубопроводы и многие другие.

Нарушения герметичности изделий обусловлены неплотностями материала, из которого изготовлены их элементы и узлы, а также неплотностями в соединениях этих элементов и узлов друг с другом. Требуемую герметичность соединений обеспечивают путем совершенствования их конструкций и технологических процессов сборки, сварки и др. Для сосудов, находящихся под избыточным давлением, требования к герметичности определяются их объемом и допустимым изменением давления в них в течение времени. Иногда исходят из условий допустимого повышения концентрации вытекающего из объема в окружающее пространство газа.

При испытаниях вакуумных систем следует иметь в виду возможность ложных натеканий, не связанных с нарушениями герметичности оболочки системы, но препятствующих получению или сохранению необходимой степени разрежения. Ложные натекания могут быть вызваны процессами газовыделения из твердых тел и так называемыми «внутренними течами», представляющими собой каналы, соединяющие с откачанным объемом замкнутую полость внутри оболочки, образовавшуюся в процессе изготовления и содержащую газ, в среде которого осуществлялась герметизация изделия.

Существенное влияние на режим откачки контролируемых вакуумных систем оказывает влажность элементов. Например, количество пара, образующегося при испарении 1 мм3 воды при комнатной температуре в объеме, откачанном до давления 10-4 Па, может быть откачано насосом с быстротой откачки 0,1 м3/с только через сутки.

Герметичность является необходимым условием работоспособности различных изделий, поэтому надежность их контроля должна быть высокой.

Однако даже после тщательного проведения испытаний герметичность объектов может быть нарушена вследствие нескольких причин:

превращение несквозных дефектов в сквозные под действием остаточных напряжений в конструкции в результате различных физико-химических воздействий;
исчезновение и появление течей в результате деформации оболочек, особенно тонкостенных, под действием механических или термических нагрузок, в связи с чем испытания оболочек изделий ответственного назначения следует проводить в условиях, максимально приближенных к рабочим;
случайное перекрытие полостей неплотностей в результате попадания в них пыли или технологических жидкостей, а также атмосферной влаги.
Воздействие атмосферной влаги может приводить к уменьшению канала течи в 10…1000 раз и даже к его полному перекрытию. При этом течь может находиться в закупоренном состоянии длительное время (от нескольких недель до нескольких месяцев) независимо от размера ее канала. Вскрытию закупоренных влагой течей способствует высокотемпературный прогрев изделий в нейтральной атмосфере или в вакууме, а также вымачивание в ацетоне перед прогревом.

При испытаниях изделий на герметичность должны быть обеспечены возможности надежной герметизации заглушек и труб подачи и отвода пробных веществ, подготовки внутренней и наружной поверхностей изделия к полному удалению посторонних веществ из полостей неплотностей, а также доступа ко всем контролируемым участкам для исправления мест, в которых возможно наличие течей.

 
 

Комментариев нет.